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In this note we consider best approximation in 1-norm from subspaces of real n-dimen-
sional spaces. Some discrete Kolmogorov-type criteria characterizing elements of best
approximation are verified. � 2002 Elsevier Science (USA)

1. INTRODUCTION

Consider l1(n), i.e., Rn endowed with the 1-norm & }&1 , and let U be an
r-dimensional linear subspace of Rn, 0<r<n. Let us denote the metric
projection

PU : Rn � 2U,

x [ [u # U : &x&u&1=dist(x; U)],

where dist(x; U)=minu # U &x&u&1 is the distance of x to the subspace U.
The famous Kolmogorov criterion characterizes all best approximants:

Classical Kolmogorov criterion. For x # Rn, u* # U, and Zx&u* :=
[1, 2, ..., n]"supp(x&u*) we have

u* # PU (x) � :
i � Zx&u*

sgn(xi&u*) } ui � :
i # Zx&u*

|ui | for all u # U.

(1)

Here supp y denotes the support of the vector y # Rn, the set of not
vanishing components of y.

It goes back to Gau? that for each x a best approximant in U exists
which interpolates x in at least r components, i.e., for each x # Rn there
exists a u* # PU (x) and pairwise distinct indices &1 , ..., &r # [1, 2, ..., n] with

x&p
=u*&p

, 1�\�r.

Most algorithms which determine a best approximant of x in U are based
on this fact. For this particular purpose the Kolmogorov criterion has been
specialized and discretized such that (1) needs to be checked for only finitely
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many points u in U, see Bloomfield and Steiger [1] or Pinkus [5] for
details.
Pinkus [5, Prop. 7.6] also gives a proof of this fact by contradiction.

First we give a discretized formulation of the restricted Kolmogorov
criterion. The criterion, however, characterizes only those best approximants
of a given vector x which interpolates x in at least r components:

Discrete restricted Kolmogorov criterion. For x # Rn and u* # U
with Z=Zx&u* :=[1, 2, ..., n]"supp(x&u*), card Z�r and rank[ U

Z]=r,
we have

u* # PU (x) � :
i � Zx&u*

sgn(xi&u i*) } ui� :
i # Zx&u*

|ui |

for all elementary vectors u # U for which an index set J/Zx&u* exists with

card J=r, rank _U
J &=r, and card(supp u & J)=1.

Let U= denote the orthogonal complement of U, and

v(1)
&1

} } } v (r)
&1

_U
J &=_ U

&1 } } } &s&=_ b b & ,

v(1)
&s

} } } v (r)
&s

where v(1), ..., v(r) is an arbitrary basis of U and J=[&1 , ..., &s].
Elementary vectors of a subspace are vectors with minimal support in

the following sense: The vector u # U is elementary if and only if w # U with
supp w/supp u implies w=* } u for some * # R, see Rockafellar [6, 203ff].

In general, however, there exist best approximants which interpolate
the given vector x in less than r components. For these approximants the
discrete restricted Kolmogorov criterion above is not applicable. Neverthe-
less, in this general situation the Kolmogorov criterion also allows a
discrete formulation which unifies both advantages of the classical and the
discrete restricted criterion. In characterizes best approximants, in general,
and requires only to check (1) for elementary vectors of U:

Theorem (Discrete Kolmogorov criterion). For x # Rn, u* # U, and
Zx&u* :=[1, 2, ..., n]"supp(x&u*) we have

u* # PU (x) � :
i � Zx&u*

sgn(x i&ui*) } ui� :
i # Zx&u*

|ui |

for all elementary vectors u in U.

Note, if an elementary vector u # U satisfies the inequality above, so does
the elementary vector *u, *>0. In other words, it is sufficient to check the
inequality above for all (finitely many) extremal points of the polyhedron
Q, see Lemma 1(ii), below.
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2. PROOF FOR THE DISCRETE KOLMOGOROV CRITERIA

In this section we first formulate a lemma which characterizes elementary
vectors from different points of view. Then we prove the theorem. Its proof
needs a technical lemma on elementary vectors. Finally, we give a direct
proof of Theorem 1.

The following lemma states equivalent characterizations of elementary
vectors:

Lemma 1. For a vector u in U the following statements are equivalent:

(i) u # U is an elementary vector;

(ii) u�&u&1 # ext Q, where Q=U & b1
1(0) denotes the intersection of U

with the closed unit ball in l1(n); Q is an r-dimensional closed convex and
symmetric polyhedron;

(iii) rank _ U=

supp u&=rank _ U=

+1 } } } +m&1&=card supp u&1

for all [+1 , ..., +m&1]/supp u and card supp u=m;

(iv) rank _ U
suppc u&=r&1 and rank _ U

suppc u _ [+]&=r

for all + # supp u.

Here suppc u :=[1, 2, ..., n]"supp u denotes the complementary index set
of the support set of u.

For the equivalence of (i), (ii), and (iii) see [2], while the equivalence
of (iii) and (iv) follows from the following relation, see [3]:

rank _ U
[1, 2, ..., n]"I&=rank _U=

I &+r&card I for any I/[1, 2, ..., n].

Rockafellar [6] defined elementary vectors in terms of their supports. The
support of an elementary vector uniquely determines it up to a scalar
factor. The geometric characterization (ii) of Lemma 1 eliminates this
degree of freedom by normalizing the elementary vector u # U : &u&1=1.
All normalized elementary vectors lie on the l1(n)-unit sphere and form
exactly the set of vertices of the polyhedron Q=U & b1

1(0). Clearly, there
are only finitely many extremal points of Q and in this sense there are only
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finitely many elementary vectors in the subspace, which are also called
elementary directions. The collection of all elementary directions of a linear
subspace spans the subspace; in general, however, the elementary directions
are linearly dependent. Moreover, each elementary vector u of the subspace
U has at least r&1 zero components, and, consequently, at most n&r+1
components which do not vanish.

From Lemma 1(iv) it follows that each elementary vector u in U has a
representation u=�r

\=1 :\v(\), where :1 , ..., :r is a non-vanishing solution
of the homogeneous system of linear equalities �r

\=1 :\v (\)
& =0, & # suppc u.

On the other hand, it follows from Lemma 1(iii) that each elementary
vector u in U is a normal vector of the hyperplane in Rcard supp u spanned
by the columns of the matrix [ U=

supp u] which has rank deficiency one. Assume

card supp u=m and rank[ w (1) } } } w (m&1)

supp u ]=m&1 where w(1), ..., w(m&1) # U=,
then the elementary vector u is given by the generalized vector (or cross)
product of the column vectors of the m_(m&1)-matrix above. For more
information on elementary vectors see [2] and [4].

Lemma 2. For each vector u in U there exist elementary vectors u(1), ...,
u(l ) # U and scalars :1 , ..., : l�0 with

u= :
l

*=1

:*u(*) and u (*)
i } ui�0, 1�i�n, 1�*�l.

Proof. Assume without loss of generality &u&1=1. Then u belongs to a
face of the relative boundary of the polyhedron Q. Let u(1), ..., u(l ) be the
extremal points of this face. Consequently u(1), ..., u(l ) are also extremal
points of Q, and hence elementary vectors in U.

Remember that each hyper-face of the unit ball b1
1(0) belongs to a closed

orthant of Rn, and so does each face of Q. We have u (*)
i } ui�0 for all

1�i�n and all 1�*�l. Finally, u is a convex combination of the
extremal points of the face of Q where u belongs to; i.e., there exist :1 , ..., :l

�0 with u=� l
*=1 :* u(*). K

Proof of the discrete Kolmogorov criterion. `` O '': It follows from the
classical Kolmogorov criterion.

`` o '': Let u* be in Rn, and u # U. By Lemma 2 there exist elementary
vectors u(1), ..., u(l) in U and scalars :1 , ..., :l�0 with u=� l

*=1 :*u(*) and
u(*)

i } ui�0, 1�i�n, 1�*�l. By assumption we have for 1�*�l

:
i � Zx&u*

sgn(x i&ui*) } u (*)
i � :

i # Zx&u*

|u (*)
i |,
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and hence

:
i � Zx&u*

sgn(xi&ui*) } :
l

*=1

:*u (*)
i � :

i # Zx&u*

:
l

*=1

:* |u (*)
i |

= :
i # Zx&u*

} :
l

*=1

:*u (*)
i }.

The last equality holds because of all summands have the same sign or
vanish. So the classical Kolmogorov criterion is satisfied and hence u* is
in PU (x). K

A direct proof of the discrete restricted Kolmogorov criterion is based on
the argument given above and the following lemma. For this we need some
notation. Let be x # Rn, u* # PU (x), and Z :=[1, 2, ..., n]"supp(x&u*)
with card Z=s�r and rank[ U

Z]=r. The orthogonal projection 6Z : Rn �
Rs, y [ y� with y� i= y i for i # Z maps the r-dimensional linear subspace U
to the r-dimensional linear subspace U� of Rs, and the basis vectors v(1), ...,
v(r) of U to the basis vectors v� (\)=6Z(v(\)) of U� , 1�\�r.

Lemma 3. Under the notation given above, u� is an elementary vector in
U� if and only if u� =6Z(u) for an elementary vector u in U with

1�card(supp u & Z) and rank _ U
suppc u & Z&�r&1.

Proof. `` O '': For u� # U� we have a unique representation u� =�r
\=1 ;\v� (\),

and hence u=�r
\=1 ;\v(\) and 6z(u)=u� . Let w be in U with supp w/

supp u. We have supp 6z(w)/supp 6z(u), and hence 6Z(w)=* } 6Z(u)
for a * # R. By uniqueness of the representation in terms of a basis of U� and
U, respectively, it follows that w=* } u; thus u is elementary in U.

Since u� {0 we have 1�card supp u� =card(supp u & Z).
Moreover, since u� is elementary, the system of linear equalities

�r
\=1 #\v (\)

i =0, i # [1, ..., s]"supp u� =suppc u & Z has a one-dimensional
set of solutions, and consequently, rank[ U

suppc u & Z]=r&1.

`` o '': The rank condition implies that there exists up to scalar multi-
plication only one vector v� in U� with supp v� /suppc u & Z=supp z� . From
0{u� =6Z(u) we conclude v� =* } u� for some * # R, and hence u� is elemen-
tary in U� . K

Proof the discrete restricted Kolmogorov criterion. We only need to
prove `` o '': Let x be in Rn and u* in U.
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Consider u in U and u~ :=6Z(u). By Lemma 2 there exist elementary
vectors u� (1), ..., u� (l ) in U� =6Z(U) and scalars :1 , ..., :l�0 with

u~ = :
l

*=1

:*u� (*) and u� (*)
i } u~ i�0, i # Z, 1�*�l.

Let us consider u� (*) more closely, 1�*�l: Since u� (*) is elementary in U� ,
by Lemma 1(iv) there exist indices &1 , ..., &r&1 # suppc u� (*) such that

rank _ U
suppc u� (*) _ [&r]&=rank _U

J &=r

with J=[&1 , ..., &r]. In particular, we have card J=r and card(supp u� (*) & J)
=1. By Lemma 3 there exists an elementary vector u(*) in U with u� (*)=
6Z(u(*)). Clearly, for u(*) the index set J/Z satisfies card J=r, rank[ U

J ]=r
and card(supp u(*) & J)=1. Consequently,

:
i � Z

sgn(xi&ui*) } u (*)
i � :

i # Z

|u (*)
i |, 1�*�l,

and hence

:
i � Z

sgn(xi&ui*) } :
l

*=1

:*u (*)
i � :

i # Z

:
l

*=1

:* |u (*)
i |= :

i # Z } :
l

*=1

:*u (*)
i }.

The last equality holds because all summands have the same sign or vanish.
By rank[ U

J ]=r and J/Z the elementary vectors u (1), ..., u(l) in U are
uniquely determined, and hence u=� l

*=1 :*u(*). The classical Kolmogorov
criterion is satisfied and consequently, u* in PU (x). K
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